Electricidad y Magnetismo.

Practicas de Laboratorio.

 

Ley de Coulumb.

Electricidad por frotamiento.

Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros.

Todos estamos familiarizados con los efectos de la electricidad estática, incluso algunas personas son más susceptibles que otras a su influencia. Ciertos usuarios de automóviles sienten sus efectos al cerrar con la llave (un objeto metálico puntiagudo) o al tocar la chapa del coche.

Creamos electricidad estática, cuando frotamos un bolígrafo con nuestra ropa. A continuación, comprobamos que el bolígrafo atrae pequeños trozos de papel. Lo mismo podemos decir cuando frotamos vidrio con seda o ámbar con lana.

Para explicar como se origina la electricidad estática, hemos de considerar que la materia está hecha de átomos, y los átomos de partículas cargadas, un núcleo rodeado de una nube de electrones. Normalmente, la materia es neutra, tiene el mismo número de cargas positivas y negativas.

Algunos átomos tienen más facilidad para perder sus electrones que otros. Si un material tiende a perder algunos de sus electrones cuando entra en contacto con otro, se dice que es más positivo en la serie triboeléctrica. Si un material tiende a capturar electrones cuando entra en contacto con otro material, dicho material es más negativo en la serie triboeléctrica.

Estos son algunos ejemplos de materiales ordenados de más positivo a más negativo:

  • Piel de conejo, vidrio, pelo humano, nylon, lana, seda, papel, algodón, madera, ámbar, polyester, poliuretano, vinilo (PVC), teflón.

El vidrio frotado con seda provoca una separación de las cargas por que ambos materiales ocupan posiciones distintas en la serie triboeléctrica, lo mismo se puede decir del ámbar y del vidrio. Cuando dos materiales no conductores entran en contacto uno de los materiales puede capturar electrones del otro material. La cantidad de carga depende de la naturaleza de los materiales (de su separación en la serie triboeléctrica), y del área de la superficie que entra en contacto. Otro de los factores que intervienen es el estado de las superficies, si son lisas o rugosas (la superficie de contacto es pequeña). La humedad o impurezas que contengan las superficies proporcionan un camino para que se recombinen las cargas. La presencia de impurezas en el aire tiene el mismo efecto que la humedad.

Habremos observado que frotando el bolígrafo con nuestra ropa atrae a trocitos de papeles. En las experiencias de aula, se frotan diversos materiales, vidrio con seda, cuero, etc.. Se emplean bolitas de sauco electrizadas para mostrar las dos clases de cargas y sus interacciones.

De estos experimentos se concluye que:

  1. La materia contiene dos tipos de cargas eléctricas denominadas positivas y negativas. Los objetos no cargados poseen cantidades iguales de cada tipo de carga. Cuando un cuerpo se frota la carga se transfiere de un cuerpo al otro, uno de los cuerpos adquiere un exceso de carga positiva y el otro, un exceso de carga negativa. En cualquier proceso que ocurra en un sistema aislado, la carga total o neta no cambia.
  2. Los objetos cargados con cargas del mismo signo, se repelen.
  3. Los objetos cargados con cargas de distinto signo, se atraen.

Medida de la carga eléctrica.

figura 1

Definimos los valores de las cargas q y q' como proporcionales a las fuerzas F y F'.

formula 1

Si arbitrariamente asignamos un valor unitario a la carga q', tenemos un medio de obtener la carga q.

En el Sistema Internacional de Unidades de Medida, la magnitud fundamental es la intensidad cuya unidad es el ampère o amperio, A, siendo la carga una magnitud derivada cuya unidad es el coulomb o culombio C.

La ley de Coulomb.

Mediante una balanza de torsión, Coulomb encontró que la fuerza de atracción o repulsión entre dos cargas puntuales (cuerpos cargados cuyas dimensiones son despreciables comparadas con la distancia r que las separa) es inversamente proporcional al cuadrado de la distancia que las separa.

formula 2

El valor de la constante de proporcionalidad depende de las unidades en las que se exprese F, q, q' y r. En el Sistema Internacional de Unidades de Medida vale 9·10-9 Nm2/C2.

Obsérvese que la ley de Coulomb tiene la misma forma funcional que la ley de la Gravitación Universal.

El electroscopio.

figura 2

El electroscopio consta de dos láminas delgadas de oro o aluminio A que están fijas en el extremo de una varilla metálica B que pasa a través de un soporte C de ebonita, ámbar o azufre. Cuando se toca la bola del electroscopio con un cuerpo cargado, las hojas adquieren carga del mismo signo y se repelen siendo su divergencia una medida de la cantidad de carga que ha recibido. La fuerza de repulsión electrostática se equilibra con el peso de las hojas.

Si se aplica una diferencia de potencial entre la bola C y la caja del mismo, las hojas también se separan. Se puede calibrar el electroscopio trazando la curva que nos da la diferencia de potencial en función del ángulo de divergencia.

Un modelo simplificado de electroscopio consiste en dos pequeñas esferas de masa m cargadas con cargas iguales q y del mismo signo que cuelgan de dos hilos de longitud d, tal como se indica la figura. A partir de la medida del ángulo q que forma una bolita con la vertical, se calcula su carga q.

figura 3

Sobre una bolita actúan tres fuerzas:

  • El peso mg
  • La tensión de la cuerda T
  • La fuerza de repulsión eléctrica entre las bolitas F

En el equilibrio:

Tsenq =F
Tcosq = mg

De acuerdo con la ley de Coulomb:

formula 3

Eliminado T en las ecuaciones de equilibrio, obtenemos la ecuación:

formula 4

La carga q está en mC y la masa m de la bolita en g.

Expresando el coseno en función del seno, llegamos a la siguiente ecuación cúbica:

formula 5

Este polinomio tiene una raíz en el intervalo (0, p /2), podemos, por tanto, aplicar un procedimiento numérico para calcular dicha raíz.

Actividades.

El programa interactivo genera aleatoriamente una carga q medida en mC, cada vez que se pulsa el botón titulado Nuevo.

A partir de la medida de su ángulo de desviación q , en la escala graduada angular, se deberá calcular la carga q de la bolita resolviendo las dos ecuaciones de equilibrio.

El valor de la masa m en g de la bolita se introduce en el control de edición Masa.

La longitud del hilo d está fijada en el programa y vale 50cm.

Ejemplo:

Sea la masa m=50 g=0.05 kg, la longitud del hilo d=50 cm=0.5 m, si se ha medido en la escala angular graduada, el ángulo que hace los hilos con la vertical q =22º, determinar la carga q de las bolitas.

La separación entre las cargas es x=2·0.5·sen(22º)=0.375 m

La fuerza F de repulsión entre las cargas vale:

formula 6

De las ecuaciones de equilibrio:

Tsen22º = F
Tcos22º = 0.05 · 9.8

Eliminamos T y despejamos la carga q, se obtiene 1.76 · 10-6C ó 1.76 mC.

Activando la casilla titulada Grafica podemos ver que a un ángulo de 22º en el eje vertical le corresponde aproximadamente 1.8 mC en el eje horizontal.

FluidoApplet1 aparecerá en un explorador compatible con JDK 1.1.

Elaborado en: Enero del 2004 | Ultima actualización: Enero del 2005.